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1 Introduction
• High-resolution (convective-scale) NWP models are be-

coming the norm: more dynamical processes such as con-
vection, cloud formation, & small-scale gravity waves, are
resolved explicitly.

• DA techniques need to evolve in order to keep up with the
developments in high-resolution NWP.

• It may be unfeasible (and even undesirable) to investigate
the potential of DA schemes on state-of-the-art NWP mod-
els. Idealised models have been employed that:
- capture some fundamental features of dynamics,
- are computationally inexpensive to implement, and
- allow an extensive investigation of the proposed scheme.

• A hierarchy of “toy” models, e.g., Lorenz’ model (L2005),
QG/BV model have been employed in DA, including:
- a “convective-scale” 1.5D shallow-layer model (Kent et al.
2015, this DA workshop).

• Here, we propose to add a 3D rotating convection model to
this hierarchy.

2 Boussinesq Parent Model
• Following Julien et al. (2006), rotating Boussinesq equa-

tions are scaled with δp∗, δρ∗ buoyancy B = g|δρ∗|/ρ∗r, hori-
zontal and vertical length scales L andLz (ratioAz = Lz/L),
and velocity scales U and LzU/L.

• The resulting dimensionless model reads:
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• with velocity u = (uH , w), buoyancy b = −gρ/ρr, back-
ground density ρ̄(z),

• Rossby Ro = U/(2ΩL), Froude Fr = U/(N0L) (buoy-
ancy frequency N0), Euler P = δp∗/(ρ∗rU

2), buoyancy Γ =

BL/U 2, and Reynolds Re and Peclet Pe numbers.

3 3D Model of Rotationally Con-
strained Convection

• Using a multi-scale, singular expansion in Ro = ε with P =

1/ε2,Γ = Γ̂/ε, Az = O(1), ΓFr2 = O(1), b → b0 + εb1, p → εp,
∂z → ε∂z a non-hydrostatic rotationally constrained model
Julien et al. (2006) derive is:
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• with horizontal Laplacian ∇2
H = ∂2

x + ∂2
y , (leading order)

vertical velocity w0,

• slowly evolving or constant buoyancy b̄0, next order buoy-
ancy b1, p = ψ, Jacobian J(ψ, ζ) ≡ ∂xψ∂yζ − ∂xζ∂yψ etc.,
and

• underlined terms denote the dissipative, viscous terms (or
turbulent counterparts).

•We consider a cylindrical domain D with radius =

r
√
x2 + y2 ∈ [0, R] and, on average, a vertical coordinate

z ∈ [0, HT ] for fixed R and HT .

4 3D Baroclinic Quasigeostrophy
• Ignoring the underlined dissipative terms in (2), strati-

fied quasigeostrophy arrives when hydrostatic balance is
assumed (equating the twice underlined terms), and the

buoyancy equation is used to eliminate w0 ∝ b1 in the ver-
tical vorticity equation:
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• with quasigeostrophic potential vorticity q.

5 Linear Dispersion Relations
Using∝ ei(kx+ly+mz−ωt) with κ2 = k2 + l2, for b̄0 constant, disper-
sion relations for the 3D parent Boussinesq, the reduced rota-
tion constrained model, and the quasi-geostrophic equations
are:
• Boussinesq: ω2 = m2/Ro2+κ2(−ρ̄′)/Fr2

(κ2+m2)
,

• rotation constrained: ω2 = m2/(κ2Ro2) + (−ρ̄′/Fr2), arising
when m� k, so for anisotropic convection:

Fig. 1. From Sprague et al. [5]: temperature/buoyancy anomaly.
Their Pr = 7, R̃a = 40.

• quasigeostrophy: ω = 0.

6 Hamiltonian Formulation
• In the inviscid case, the Hamiltonian/energy of (2) is:
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upon using the boundary conditions ψ = 0 at r = R, w0 = 0

at z = 0, HT .

• Variations of the Hamiltonian are:
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using the restriction on the functional derivatives δH/δζ =

0 at r = R and δH/δw0 = 0 at z = 0, HT .

• A co-symplectic formulation follows from (2) and (5a):
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• Underlined terms are null. Potential vorticity (Julien et al.
2006) is conserved.

7 Numerical Weak Formulation
• Consequently, a weak formulation and candidate Hamilto-

nian formulation reads
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• By using (5b) and the restriction on the functional deriva-
tives δH/δζ = 0 at r = R and δH/δw0 = 0 at z = 0, HT (for
the inviscid case), the Hamiltonian formulation (7) yields
the (inviscid) equations of motion (2), essentially by revers-
ing its construction.

• Again ζ = ∇2ψ must be defined and used in separation.

• Clearly (7) is skew-symmetric and Jacobi’s identity
{F , {G,H}} + {H, {F ,G}} + {G, {H,F}} = 0 verified
(doubly-periodic horizontal domain).

• If we take variations of F as arbitrary test functions, then
(7) serves as (finite element) weak formulation.

8 Phase Changes: Iodine Cycle

• Consider a container with dry air at room temperature and
a small mass fraction of solid iodine particles on the bot-
tom.

• Heat and keep the bottom above the iodine sublimation
temperature Ts = 386K.

• Keep the top below T < Ts with a teflon surface repelling
iodine solidification.

• Rotating Rayleigh-Bénard convection set-up.

• Total dimensional density is related to temperature as fol-
lows: ρ = ρ0(1− αTT ).

• A bulk two-state moisture model is adopted with iodine
vapor qv and iodine snow/precipitate qs, cf. similar ap-
proach in Zerroukat & Allen.

9 Future Work: Conceptual Labo-
ratory Experiment & DA

Fig. 2. Left: Sketch of experimental set-up for rotating Rayleigh-
Bénard convection with iodine phase changes. Right: sample of io-
dine vapor.
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